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THE STRUCTURE OF THE PROJECTIVE 
INDECOMPOSABLE MODULES OF 3M22 

IN CHARACTERISTIC 2 

W. LEMPKEN AND R. STASZEWSKI 

ABSTRACT. This paper presents the socle series of the projective indecomposable 
modules for the triple cover 3M22 in characteristic 2. The results are obtained 
by computational means; the methods as well as the constructive approach are 
explained. 

INTRODUCTION 

In this note we want to describe how to determine the Loewy and socle struc- 
ture of the projective and indecomposable modules (PIMs) for the triple cover 
3M22 of the simple Mathieu group M22 in characteristic 2. The knowledge of 
such structures is not only of interest to modular representation theory but also 
to the study of the cohomology of the underlying group. The computer will 
be the main tool to achieve this goal; in particular, R. Parker's "MEAT-AXE" 
package [4] and the Computer Algebra System CAYLEY [1] will be applied. 
We point out that among all the PIMs, the projective cover P(1) of dimension 
6272 is the most challenging one; to our knowledge this is the biggest module 
whose socle series has been determined by computational means. 

The notation used is standard. In particular, P(S) denotes the projective 
cover of the module S; moreover, whenever convenient, modules will be de- 
noted by their dimensions. For entries in character tables we refer to [2], e.g., 
bn =(-1 + iVi)/2 for n _ 3 mod 4. 

1. PREREQUISITES ON IRREDUCIBLES AND PIMs 

In this section we collect some data on the irreducibles and PIMs of 3M22 in 
characteristic 2, which will be used later for the actual computer construction 
of the PIMs. 

1.1. Proposition. Let G - 3M22; then the following hold: 

(1) GF(4) is a splittingfieldfor G. 
(2) The 2-modular character table of G is as follows: 
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1A 3A 5A 7A B** 11A B** 
1 1 1 1 1 1 1 

10 1 0b7 ** -1 -1 
10 1 0 ** b7 -1 -1 
34 -2 -1 -1 -1 1 1 
70 -2 0 0 0 -1+bll ** 

70 -2 0 0 0 ** - +bll 
98 -1 -2 0 0 -1 -1 

1 3 5 7 7 11 11 
3 15 21 21 33 33 
3 15 21 21 33 33 

02 6 0 1 -1 -1 -bll ** 

02 15 0 0 1 1 -1 + bll ** 

02 45 0 0b7 ** 1 1 
02 45 0 0 ** b7 1 1 
02 84 0 -1 0 0 1 - bl ** 

02 384 0 -1 -1 -1 -1 -1 

(3) The irreducible GF(4) - G modules fall into five blocks as follows: 

Bo = {1, lOa, lOb, 34, 70a, 70b, 98}, 
B1 = {6a, 15a, 45a, 45c, 84a}, 
B2 = {6b, 15b, 45b, 45d, 84b}, 
B3 = {384a}, 

B4= {384b}. 

Here, Bo is the principal block containing only nonfaithful modules, whereas the 
remaining blocks contain only faithful modules. Moreover, Bi+ is the dual and 
Galois-conjugate of Bi for i E { 1, 3}. 

(4) Let Di and Ci denote the decomposition matrix and the Cartan matrix 
of Bi, respectively, for i E {0, 1 }; then we have: 

1 lOa lOb 34 70a 70b 98 
1 1 0 0 0 0 0 0 

21 1 1 1 0 0 0 0 
45 1 1 0 1 0 0 0 
45 1 0 1 1 0 0 0 
55 1 1 1 1 0 0 0 

Do: 99 1 0 0 0 0 0 1 
154 2 1 1 1 0 0 1 
210 4 2 2 2 0 0 1 
231 3 1 1 2 1 1 0 
280 4 2 2 2 1 0 1 
280 4 2 2 2 0 1 1 
385 5 2 2 3 1 1 1 
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1 iOa lOb 34 70a 70b 98 
1 92 42 42 50 12 12 20 

lOa 42 21 20 23 5 5 9 
lOb 42 20 21 23 5 5 9 

CO: 34 50 23 23 29 7 7 10 
70a 12 5 5 7 3 2 2 
70b 12 5 5 7 2 3 2 
98 20 9 9 10 2 2 6 

6a 15a 45a 45c 84a 
21 1 1 0 0 0 
45 0 0 1 0 0 
45 0 0 0 1 0 
99 0 1 0 0 1 

D1: 105 1 1 0 0 1 
105 0 1 1 1 0 
210 1 2 1 1 1 
231 2 3 1 1 1 
231 2 3 1 1 1 
330 2 4 1 1 2 

6a 15a 45a 45c 84a 
6a 15 24 7 7 10 

15a 24 42 13 13 18 
C1: 45a 7 13 6 5 5 

45c 7 13 5 6 5 
84a 10 18 5 5 9 

(5) The Brauer characters of the PIMs are as follows: 

IA 3A 5A 7A B** IIA B** 
3 15 21 21 33 33 
3 15 21 21 33 33 

P(1) 6272 8 2 0 0 2 2 
P(lOa) 2816 8 1 b7-1 ** 0 0 
P(lOb) 2816 8 1 ** b7- 1 0 0 
P(34) 3456 0 1 -2 -2 2 2 
P(70a) 896 -4 1 0 0 bll ** 

P(70b) 896 -4 1 0 0 ** bll 
P(98) 1408 4 -2 1 1 0 0 

P(6a) 1920 0 5 2 2 -bil ** 

P(15a) 3456 0 6 5 2 2 2 
P(45a) 1152 0 2 1 +b7 ** 3 + bll ** 

P(45c) 1152 0 2 -b7 ** 3 + bll ** 

P(84a) 1536 0 1 3 3 1 - bll ** 

P(384a) 384 0 -1 -1 -1 -1 -1 
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Proof. The claims follow easily from [2, 5] and straightforward calculations. El 

1.2. Proposition. Let G _ 3M22, and let L, A and F be subgroups of G 
such that L - SL3(4) _ 3L3(4), A - 3Alt7, and F _ Z3 x F55; then the 
following hold: 

(1) StL tG= P(98), where St denotes the projective irreducible Steinberg 
module of L. 

(2) P(4a)A tG= P(98) D P(lOb) and P(4b)A tG= P(98) D P(lOa), where 
4a and 4b denote the two different 4-dimensional irreducibles of A. 

(3) 6a 0 384b = P(98) D P(70a) and 6b 0 384a = P(98) D P(70b). 
(4) 15a 0 384b = P(98) e P(70b) e P(34). 
(5) 1F tG= P(70a) e P(70b) e P(1). 
(6) 6b 384b = 2 * 384a D P(84a). 
(7) 10b 384a = 3 * 384a D P(84a) D P(45a) and 10a ? 384a = 3 * 384a D 

P(84a) D P(45c). 
(8) 6a ? P(70b) = 5 * 384a D P(15a). 
(9) AF tG= 6 * 384a D P(45a) D P(45c) D P(84) D P(6a) with a suitable 

nontrivial 1-dimensional module A of F with kerA - F55. 

Proof. Straightforward calculations using (1.1) El 

1.3. Remark. In order to construct matrix representations of G- 3M22, we 
start off with the following 12-dimensional representation of Go 3 Aut(M22) 
over GF(2): 

1 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 
O 0 1 0 0 0 0 0 0 0 0 0 
O 0 1 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 1 0 0 0 0 0 
O 0 1 1 0 0 0 0 1 0 0 0 

g8:= 0 0 0 0 1 0 0 0 0 0 0 0 
0 1 1 0 1 0 0 1 0 0 0 0 
0 0 0 O 0 1 0 0 0 0 0 0 
1 0 0 1 0 1 0 0 0 1 0 0 
1 0 0 1 1 0 0 1 0 0 1 0 

O 1 0 0 1 0 0 0 0 0 0 O0 

1 1 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 0 0 0 0 0 0 

1 0 1 0 1 1 0 0 0 0 0 0 

1 1 0 0 1 0 0 0 0 0 0 0 

1 1 0 1 1 1 0 0 0 0 0 0 
914= 0 0 0 0 0 0 1 1 0 0 1 0 

O O O O O 0 1 1 0 0 0 0 

O O O O O 0 1 1 1 1 1 1 

O O O O O 0 1 1 1 1 0 0 

O O O O O O 0 1 0 0 1 0 

1 O O O O O O 1 0 1 1, 
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Then o(g8) = 8, o(g14) = 14 as well as Go:= (g8, g14) 3Aut(M22) - G:Z2 
and Go = (g8, (g14)2) - G. This representation can easily be obtained using 
the information given in [3]. Note that if the 12-dimensional representation 
given above for G is read over GF(4), then it splits as 6a e 6b. So we are in a 
position to produce all the irreducibles (and further modules) by the standard 
method of taking tensors, exterior squares, etc., and chopping these into simple 
constituents. 

2. FINGERPRINTS 

In this section we present some very elementary, but nonetheless useful, ob- 
servations on a concept first introduced by R. Parker [4]. 

2.1. The setting. Let G be a finite group, F a finite field of characteris- 
tic p > 0, and let I := Irr(FG) be a complete set of nonisomorphic simple 
FG-modules. Given an FG-module M, then (oM denotes the corresponding 
representation G -- GL(M). Finally, the left null-space of a matrix X is 
denoted by NS(X). 

An element w E FG is called a characteristic fingerprint (CFP) of type J, 
J C I, provided 

dim(NS((s(w))) 
= for S E I\J, 

{ > O for S E J. 

For the sake of convenience, a CFP of type I is also called an all-round fin- 
gerprint (AFP). Clearly, base transformations do not affect the dimensions of 
null-spaces, and so the definition of CFPs depends only on the isomorphism 
type of the simple modules involved. 

Note that if F is a splitting field of G, then there exists an orthogonal 
decomposition FG = E eiFG with primitive idempotents ei such that eiFG 
is a projective indecomposable FG-module. Moreover, for each S E I there 
exists a suitable eS among the ei's such that esFG - P(S) as well as 

dim(Tes) ={ if T E I\{S}, 

Thus, for each 0 5 J C I the element WJ := 1 - ESEj eS is a CFP of type J 
having nullity 1 on each S E J. 

We are now in a position to list some observations whose proofs are left as 
easy exercises for the reader. 

2.2. Proposition. Let M, N be FG-modules, and let w E FG; then the fol- 
lowing hold: 

(1) CFPs respect direct sums, i.e., NS('MEN(w)) - NS(?qm(W)) D 
NS((PN M) ) 

(2) CFPs respect Galois automorphisms of F, i.e., NS(OMG (w)) = 

NS(q,m(w))a for a E Gal(F). 
(3) Suppose that w is a CFP of type J and that r is the set of all FG- 

submodules X of M such that X/ rad(X) is the only simple composition factor 
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of X contained in J; moreover, put V = NS((OM(w)). Then for each X E J' 
there exists v E V such that the (pM(G)-closure (vf9M(G)) equals X, and hence 
(V,pM(G)) > (f). Also, (12) = SOCFG(M) whenever w is an AFP. 

2.3. Example. Here we illustrate the fact that in the context of (2.2.3) the clo- 
sure (NS((9M(w)),pM(G)) does not necessarily contain all the simple composition 
factors isomorphic to elements of J which do occur in M. 

Take G = (a) Z2 and F = GF(2); then FG has only one simple module, 
namely the trivial on 1G. Consider M= FG with (oM(a) I -(1). So, w= 
1 + a is a CFP for lG with (OM(W) = (?)O ), and N = NS((M(w)) = ((1, O)) 
is G-invariant with N _ M/N _ 1G. 

2.4. Remark. Note that in view of the last remark in (2.2) we have a method 
to find a submodule still containing socFG(M) which in general is considerably 
smaller than the module M and therefore can be used very effectively instead 
of M to calculate socFG(M). 

Of course, the same idea applies if we are interested only in the J-component 
of the socle (J C Irr(FG)) . 

3. THE PIMS 

We are now ready to demonstrate how to get hold of a PIM for G = 3M22 
and how to calculate its socle series. In order to produce any individual PIM, 
we follow the strategy already described in parts (1)-(9) of Proposition (1.2). 

A simple induction process yields P(98) = StL tG. In the next step a further 
induction gives 

P = P(4a)A tG= P(98) D P(lOb). 

Assuming that the socle series of P(98) is known, one could try and determine 
that for P, and so eventually find that for P(lOb). Although this would have 
worked in this particular instance, we decided to produce P(1Ob) as a quotient 
of P by successively factoring out appropriate submodules, with the effect of 
saving CPU time and space when computing the socle series of P(1Ob). 

We now elaborate a bit further on the factor process mentioned above. In a 
quick precomputation we produce a list of CFPs for each simple FG-module S, 
aiming in particular at those of small positive nullity; in view of the comments in 
(2.1), the element 1- eS would be an absolutely perfect candidate, but in general 
it is very hard to get hold of such idempotents in a given matrix representation of 
G. Now we use a CFP of type 1 Ob to find the uniquely determined submodule 
Slo-- lOb of P. In the next step we use elements v of NS((op(w)) for a 
suitable CFP of type 98 to check if (V9P(G)) nS10 = 0; if so, we take the quotient 
p/(V,P(G)) and continue this way until the resulting module is P(lOb). Notice 
that by taking w of type 98, we ensure that we factor out all of P(98) (see 
(2.2.1) and (2.2.3)). Furthermore, note that dim(NS(op(98)(w))) should be 
comparatively small in order to minimize the number of v's to be tested. 

In this way we follow Proposition (1.2) as a guideline and produce one new 
PIM at each time. Finally, we mention that in producing P(6a), a modification 
of the quotient process turned out to be very useful inasmuch as instead of 
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taking null-spaces of CFPs (their dimension being too big) we take fixed point 
spaces of suitable subgroups of G. 

Next we proceed to describe the algorithmic approach to determine the so- 
cle series of a given PIM of G. For this, we use an enhanced version of R. 
Parker's "MEAT-AXE" package [4] together with the Computer Algebra Sys- 
tem CAYLEY [1], with an implementation of various representation-theoretic 
algorithms of G. Schneider described in [6]. Since these algorithms can deal 
only with modules of a few hundred dimensions, we first of all construct a 
submodule still containing the socle by taking G-closures of null-spaces of suit- 
able AFPs and fixed point spaces of Sylow p-subgroups of G. If the resulting 
module is still too big to be fed into a direct computation of the socle, we use 
fixed point spaces of suitable subgroups and CFPs of type Ji (C I) according 
to a decomposition of I into disjoint subsets J1, ... , Jr in order to calculate 
the Ji-components of the socle. Now restart this process by considering the 
appropriate quotient-module, thus calculating successively the socle layers of 
the given FG-module. 

We close this section by giving some data concerning the performance of the 
algorithms described above: 

X dim(X) CPU time for calculation 
of the socle series of X 

P(70a) 896 1:40 hrs 
P(98) 1408 3:00 hrs 
P(70a) D P(98) 2304 13:20 hrs 
P(15a) 3456 19:10 hrs 
P(1) 6272 62:00 hrs 

Also we note that the factor process to get P(70a) as a quotient of the module 
6a 0 384b - P(98) D P(70a) only took 21 hours of CPU time, which clearly 
shows the advantage of this approach compared with the direct computation of 
the socle series of 6a X 384b. Finally, we mention that all these calculations 
were carried out on an IBM RS 6000 (model 320 H). 

Having explained all the ingredients of the algorithms to compute the socle 
series, we are now ready to state the results; but before doing so, we make the 
following obvious 

Remark. The socle series and Loewy series of all the nonsimple PIMs of 3M22 
in characteristic 2 can be obtained from those whose socle is contained in the 
principal block Bo or in the block B1, simply by an application of duality or 
Galois-conjugation. 

Here is our 

Main Theorem. The socle series of the PIMs, P(S), P(S), S E Bo U B1, for the 
group 3M22 in characteristic 2 are as follows: 
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Pt1) 

10b 34 

1 lOa 34 70a 70b 

1 10a 10b 98 

1 1 10a 10a 34 34 70a 70b 

1 1 1 1 10a 10b 34 34 

1 1 1 10a 10b 34 34 98 

1 1 1 1 1 10a 10b 10b 34 34 34 98 98 

1 1 1 1 1 10a 10b 10b 10b 34 34 70a 70b 98 

1 1 1 1 10a 10a 10a 10b 10b 10b 10b 34 34 70a 70b 98 

1 1 1 1 10a 10a 10a 10b 10b 10b 34 34 34 70a 70b 

1 1 1 1 10a 10a 10a 10b 34 34 34 70a 70b 98 

1 1 1 1 1 1 0a 10a 10a 10a 10a 10b 34 34 98 98 

1 1 1 1 1 1 1 11 1 10b 10b 10b 34 34 34 34 98 

1 1 1 10a 10a 10a 10b 10b 10b 10b 34 34 34 34 34 70a 70b 98 98 98 

1 1 1 1 1 1 1 1 1 10a 10a 10a 10a 10b 10b 10b 34 70a 70b 

1 1 1 1 1 1 10a 10a 10b 10b 10b 10b 10b 34 34 34 34 70a 70b 

1 1 1 1 10a 10a 10a 10a 10a 10b 34 34 34 34 70a 70b 98 98 98 

1 1 1 1 1 1 1 1 10a 10a 10b 10b 34 34 

1 1 1 1 1 0a 10b 10b 10b 34 34 34 98 98 

1 1 1 10a 10a 10b 34 34 70a 70b 98 

1 1 1 10b 10b 34 

10a 34 70a 70b 98 

P(10a) P(10b) 

10a 10b 

1 10a 34 

34 1 1Oa 

1 1 34 

10b 98 1 1 34 

1 10a 10b 34 70a 70b 1 10b 98 

1 lOa 10a 10b 34 1 10b 10b 34 98 

1 1 10a 34 1 10a 10b 34 70a 70b 

1 1 1 10a 34 34 98 1 10a 10a 10b 34 70a 70b 

1 1 1 1 10b 34 98 1 1 1 10a 10a 34 

1 1 1 10b 10b lOb 34 98 1 1 1 34 34 98 

1 10a 10b 10b 10b 34 34 70a 70b 1 1 1 10a 10a 10b 34 98 

1 10a lOa 10a 10b 34 70a 70b 1 1 1 1 1 10b 10b 10b 34 

1 1 1 10a 10a 10a 34 10a 10b 10b 10b 34 34 34 70a 70b 98 

1 1 1 1 34 34 34 98 1 1 1 1Oa 1Oa 1Oa 1Oa 70a 70b 

1 1 1 10a 10a 10b 34 98 98 1 1 1 1 10b 10b 34 34 

1 1 1 1 1 10b 10b 34 1 1 10a 10a 34 34 98 98 

1 10a 10b 10b 10b 34 34 70a 70b 1 1 1 1 1 10a 10b 34 

1 1 10a 10a 10a 34 70a 70b 1 1 10b 10b 10b 34 34 

1 1 1 10b 34 1 10a 10a 34 70a 70b 98 

1 10a 34 98 98 1 1 10b 

1 1 1Ob 34 98 

10b 34 1 10a 

10a 10b 
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P(34) P(70a) P(70b) P(98) 

34 70a 70b 98 

1 10a 1 1 1 

1 10b 34 34 lOb 34 

10a 34 34 70a 70b 1 1 10a 

1 1 10a 98 10b 10b 1- 10a 

1 1 10b 34 34 34 1 1 34 

1 1 10a 10b 34 34 70a 70b lOa 70b 10a 70a 1 10b 98 

1 1 1 10a 10b 98 1 10a 1 10a 1 10b 34 

1 1 10a 10b 10b 34 34 1 34 1 34 10a 10b 34 70a 70b 

1 1 10a 10b 34 34 70a 70b 98 1 98 1 98 1 10a 

1 1 1 10a 10a 10b 98 1 10b 1 10b 1 1 34 

1 1 1 lOa 10b 10b 34 34 10b 34 10b 34 1 10a 34 98 

1 1 10a 10b 34 34 34 70a 70b 98 loa 70a lOa 70b 1 1 1 10b 

1 1 1 10a 10a 10a 10b 98 1 10a 1 10a 10b 10b 34 

1 1 1 1 10b 10b 10b 34 34 1 34 1 34 10a 10a 70a 70b 98 

1 10a 10a 10b 34 34 34 70a 70b 98 1 98 1 98 1 1 1 

1 1 1 1 10a 10a 10b 34 34 1 10b 1 10b 34 34 98 

1 1 1 1 10a 10b 10b 34 34 10b 34 10b 34 1 1 10a 

1 1 10a 10a 10b 34 70a 70b 98 98 10a 70b 10a 70a 1 lOb lOb 

1 1 1 10a 10b 34 1 1 10a 34 

1 1 10b 34 34 34 34 1 

1 10a 70a 70b 98 1 1 98 

1 1Ob 70a 70b 

34 

P(6a) P(15a) 

6a 15a 

15a 15a 6a 6a 84a 84a 

6a 6a 84a 15a 15a 15a 15a 45a 

15a 15a 15a 6a 6a 6a 45c 45c 84a 84a 

6a 6a 45a 45c 84a 84a 84a 15a 15a 15a 15a 15a 15a 15a 15a 15a 45a 

15a 15a 15a 15a 15a 45c 6a 6a 6a 6a 6a 45a 45a 45a 45c 45c 84a 84a 84a 84a 84a 

6a 6a 6a 15a 15a 45a 45a 45c 84a 84a 6a 6a 15a 15a 15a 15a 15a 15a 15a 15a 45c 45c 45c 

6a 15a 15a 15a 15a 45a 45c 6a 6a 6a 6a 15a 15a 15a 15a 15a 45a 45a 45c 84a 84a 84a 

6a 6a 6a 15a 45a 45c 45c 84a 84a 6a 15a 15a 15a 15a 15a 15a 45a 45a 45a 45c 84a 

15a 15a 15a 15a 15a 45a 6a 6a 6a 6a 6a 15a 45a 45c 45c 45c 84a 84a 84a 

6a 6a 45a 45c 84a 84a 15a 15a 15a 15a 15a 15a 15a 45a 

l5a 15a 6a 6a 45a 45c 84a 84a 

6a 15a 
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P(45a) P(45c) P(84a) 

45a 45c 84a 

45c 15a 15a 15a 

15a 15a 45a 84a 6a 84a 

6a 45a 84a 84a 6a 15a 45c 15a 15a 45a 

6a 15a 15a 45c 15a 15a 15a 45a 6a 6a 6a 45c 45c 84a 

6a 15a 15a 15a 45a 6a 6a 45a 45c 84a 84a 15a 15a 15a 15a 15a 

6a 15a 45a 45c 84a 6a 15a 15a 45c 6a 6a 45a 45a 84a 84a 

6a 6a 15a 45c 84a 6a 15a 15a 15a 45a 15a 15a 15a 45c 84a 

15a 15a 15a 45a 6a 15a 45c 84a 6a 6a 15a 45c 84a 

6a 45c 84a 6a 15a 84a 15a 15a 15a 45a 

15a 15a 45a 6a 6a 45a 45c 84a 

45a 45c 15a 15a 

84a 

ACKNOWLEDGMENTS 

The second author gratefully acknowledges financial support from the DFG 
while this project was carried out. 

BIBLIOGRAPHY 

1. J. J. Cannon, An introduction to the group theory language CAYLEY, Computational Group 
Theory (M. D. Atkinson, ed.), Academic Press, New York, 1984, pp. 145-183. 

2. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS offinite 
groups, Clarendon Press, Oxford, 1985. 

3. W. Lempken, A 2-local characterization of Janko's simple group J4, J. Algebra 55 (1978), 
403-445. 

4. R. A. Parker, The computer calculation of modular characters (the MEAT-AXE), Computa- 
tional Group Theory (M. D. Atkinson, ed.), Academic Press, New York, 1984, pp. 267-274. 

5. -, A collection of modular characters, Preprint, University of Cambridge, 1989. 
6. G. J. A. Schneider, Computing with endomorphism rings of modular representations, J. 

Symbolic Comput. 9 (1990), 607-636. 

INSTITUTE FOR EXPERIMENTAL MATHEMATICS, UNIVERSITY OF ESSEN, ELLERNSTRASSE 29, 
45326 ESSEN, GERMANY 


